Ограничения: время – 4s/8s, память – 256MiB Ввод: input.txt или стандартный ввод Вывод: output.txt или стандартный вывод 
Послать решение Blockly Посылки Темы Где Обсудить (0)
Consider a set K of positive integers.
Let p and q be two non-zero decimal digits. Call them K-equivalent
if the following condition applies:
For every n ∈ K, if you replace one digit p with q or one digit q with
p in the decimal notation of n then the resulting number will be
an element of K.
For example, when K is the set of integers divisible by 3, the digits
1, 4, and 7 are K-equivalent. Indeed, replacing a 1 with a 4 in
the decimal notation of a number never changes its divisibility by 3.
It can be seen that K-equivalence is an equivalence relation
(it is reflexive, symmetric and transitive).
You are given a finite set K in form of a union of disjoint finite intervals
of positive integers.
Your task is to find the equivalence classes of digits 1 to 9.
Input
The first line contains n, the number of intervals composing the set K
(1 ≤ n ≤ 10 000).
Each of the next n lines contains two positive integers ai and bi that
describe the interval [ai, bi]
(i. e. the set of positive integers between ai and bi, inclusive), where
1 ≤ ai ≤ bi ≤ 1018. Also, for i ∈ [2..n]: ai ≥ bi-1 + 2.
Output
Represent each equivalence class as a concatenation of its elements,
in ascending order.
Output all the equivalence classes of digits 1 to 9, one at a line, sorted
lexicographically.
Sample Output 1
1234
5
6
789
Sample Output 2
12
345
6
7
89
Source: ACM ICPC NEERC, 2009