Имя: Пароль: Зарегистрироваться Восстановить пароль
02/04/2023 14:37:28

# Рабочее место участника

## Задачи

1058. Prime Polynom

Ограничения: время – 2s/4s, память – 32MiB Ввод: input.txt или стандартный ввод Вывод: output.txt или стандартный вывод Послать решение Blockly Посылки Темы Где Обсудить (0)

A prime number is an integer greater than 1 that has no positive divisors other than 1 and itself. The first prime numbers are 2, 3, 5, 7, 11, 13, 17, … It is known that no non-constant polynomial function P(n) exists that evaluates to a prime number for all integers n. But there are some famous quadratic polynomials that are prime for all non-negative integers less than M (M depends on the polynomial).
You will be given integers A, B and C. You should find the smallest non-negative integer M such that A*M^2\ +\ B*M\ +\ C is not a prime number.
Constraints
• A will be between 1 and 10000, inclusive.
• B will be between –10000 and 10000, inclusive.
• C will be between –10000 and 10000, inclusive.
Input contains N – number of polynoms, followed by N lines, each of these define one polynom by three integers A B C, separated by space character.
For each polynom output smallest non-negative integer M such that A*M^2\ +\ B*M\ +\ C is not a prime number.

Sample Input

5
1 -1 41
1 1 41
1 1 -13
1 -15 97
1 -79 1601


Sample Output

41
40
0
48
80 